Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Total Environ ; 858(Pt 3): 159996, 2023 Feb 01.
Article in English | MEDLINE | ID: covidwho-2105902

ABSTRACT

Wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be useful for monitoring population-wide coronavirus disease 2019 (COVID-19) infections, especially given asymptomatic infections and limitations in diagnostic testing. We aimed to detect SARS-CoV-2 RNA in wastewater and compare viral concentrations to COVID-19 case numbers in the respective counties and sewersheds. Influent 24-hour composite wastewater samples were collected from July to December 2020 from two municipal wastewater treatment plants serving different population sizes in Orange and Chatham Counties in North Carolina. After a concentration step via HA filtration, SARS-CoV-2 RNA was detected and quantified by reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) and quantitative PCR (RT-qPCR), targeting the N1 and N2 nucleocapsid genes. SARS-CoV-2 RNA was detected by RT-ddPCR in 100 % (24/24) and 79 % (19/24) of influent wastewater samples from the larger and smaller plants, respectively. In comparison, viral RNA was detected by RT-qPCR in 41.7 % (10/24) and 8.3 % (2/24) of samples from the larger and smaller plants, respectively. Positivity rates and method agreement further increased for the RT-qPCR assay when samples with positive signals below the limit of detection were counted as positive. The wastewater data from the larger plant generally correlated (⍴ ~0.5, p < 0.05) with, and even anticipated, the trends in reported COVID-19 cases, with a notable spike in measured viral RNA preceding a spike in cases when students returned to a college campus in the Orange County sewershed. Correlations were generally higher when using estimates of sewershed-level case data rather than county-level data. This work supports use of wastewater surveillance for tracking COVID-19 disease trends, especially in identifying spikes in cases. Wastewater-based epidemiology can be a valuable resource for tracking disease trends, allocating resources, and evaluating policy in the fight against current and future pandemics.


Subject(s)
COVID-19 , Wastewater-Based Epidemiological Monitoring , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Wastewater , RNA, Viral
2.
PLoS One ; 17(6): e0270659, 2022.
Article in English | MEDLINE | ID: covidwho-1910693

ABSTRACT

Wastewater based epidemiology (WBE) is useful for tracking and monitoring the level of disease prevalence in a community and has been used extensively to complement clinical testing during the current COVID-19 pandemic. Despite the numerous benefits, sources of variability in sample storage, handling, and processing methods can make WBE data difficult to generalize. We performed an experiment to determine sources of variability in WBE data including the impact of storage time, handling, and processing techniques on the concentration of SARS-CoV-2 in wastewater influent from three wastewater treatment plants (WWTP) in North Carolina over 19 days. The SARS-CoV-2 concentration in influent samples held at 4°C did not degrade significantly over the 19-day experiment. Heat pasteurization did not significantly impact the concentration of SARS-CoV-2 at two of the three WWTP but did reduce viral recovery at the WWTP with the smallest population size served. On each processing date, one filter from each sample was processed immediately while a replicate filter was frozen at -80°C. Once processed, filters previously frozen were found to contain slightly higher concentrations (<0.2 log copies/L) than their immediately processed counterparts, indicating freezing filters is a viable method for delayed quantification and may even improve recovery at WWTP with low viral concentrations. Investigation of factors contributing to variability during sample processing indicated that analyst experience level contributed significantly (p<0.001) to accepted droplet generation while extraction efficiency and reverse transcription efficiency contributed significantly (p<0.05) to day-to-day SARS-CoV-2 variability. This study provides valuable practical information for minimizing decay and/or loss of SARS CoV-2 in wastewater influent while adhering to safety procedures, promoting efficient laboratory workflows, and accounting for sources of variability.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , RNA, Viral , Wastewater , Wastewater-Based Epidemiological Monitoring
3.
J Virol Methods ; 297: 114230, 2021 11.
Article in English | MEDLINE | ID: covidwho-1305288

ABSTRACT

Throughout the COVID-19 global pandemic there has been significant interest and investment in using Wastewater-Based Epidemiology (WBE) for surveillance of viral pathogen presence and infections at the community level. There has been a push for widescale implementation of standardized protocols to quantify viral loads in a range of wastewater systems. To address concerns regarding sensitivity, limits of quantification, and large-scale reproducibility, a comparison of two similar workflows using RT-qPCR and RT-ddPCR was conducted. Sixty raw wastewater influent samples were acquired from nine distinct wastewater treatment plants (WWTP's) served by the Hampton Roads Sanitation District (HRSD, Virginia Beach, Virginia) over a 6-month period beginning March 9th, 2020. Common reagents, controls, master mixes and nucleic acid extracts were shared between two individual processing groups based out of HRSD and the UNC Chapel Hill Institute of Marine Sciences (IMS, Morehead City, North Carolina). Samples were analyzed in parallel using One-Step RT-qPCR and One-Step RT-ddPCR with Nucleocapsid Protein 2 (N2) specific primers and probe. Influent SARS-CoV-2 N2 concentrations steadily increased over time spanning a range from non-detectable to 2.13E + 05 copies/L. Systematic dilution of the extracts indicated that inhibitory components in the wastewater matrices did not significantly impede the detection of a positive N2 signal for either workflow. The RT-ddPCR workflow had a greater analytical sensitivity with a lower Limit of Detection (LOD) at 0.066 copies/µl of template compared to RT-qPCR with a calculated LOD of 12.0 copies/µL of template. Interlaboratory comparisons using non-parametric correlation analysis demonstrated that there was a strong, significant, positive correlation between split extracts when employing RT-ddPCR for analysis with a ρ value of 0.86.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL